Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in Arabidopsis thaliana
نویسندگان
چکیده
The single-celled trichome of Arabidopsis thaliana is a widely used model system for studying cell development. While the pathways that control the later stages of trichome development are well characterized, the early signalling events that co-ordinate these pathways are less well understood. Hormones such as gibberellic acid, salicylic acid, cytokinins, and ethylene are known to affect trichome initiation and development. To understand the role of the plant hormone ethylene in trichome development, an Arabidopsis loss-of-function ethylene receptor mutant, etr2-3, which has completely unbranched trichomes, is analysed in this study. It was hypothesized that ETR2 might affect the assembly of the microtubule cytoskeleton based on analysis of the cytoskeleton in developing trichomes, and exposures to paclitaxol and oryzalin, which respectively act either to stabilize or depolymerize the cytoskeleton. Through epistatic and gene expression analyses it is shown that ETR2 is positioned upstream of CHROMATIN ASSEMBLY FACTOR1 and TRYPTICHON and is independent of the GLABRA2 and GLABRA3 pathways. These results help extend understanding of the early events that control trichome development and identify a signalling pathway through which ethylene affects trichome branching.
منابع مشابه
Ethylene Responses Are Negatively Regulated by a Receptor Gene Family in Arabidopsis thaliana
A family of genes including ETR1, ETR2, EIN4, ERS1, and ERS2 is implicated in ethylene perception in Arabidopsis thaliana. As only dominant mutations were previously available for these genes, it was unclear whether all of them are components in the ethylene signaling pathway and whether they code for positive or negative regulators of ethylene responses. In this study, we have isolated loss-of...
متن کاملETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis.
The plant hormone ethylene regulates a variety of processes of growth and development. To identify components in the ethylene signal transduction pathway, we screened for ethylene-insensitive mutants in Arabidopsis thaliana and isolated a dominant etr2-1 mutant. The etr2-1 mutation confers ethylene insensitivity in several processes, including etiolated seedling elongation, leaf expansion, and ...
متن کاملThe Ethylene Receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 Have Contrasting Roles in Seed Germination of Arabidopsis during Salt Stress1[W][OPEN]
In Arabidopsis (Arabidopsis thaliana), ethylene responses are mediated by a family of five receptors that have both overlapping and nonoverlapping roles. In this study, we used loss-of-function mutants for each receptor isoform to determine the role of individual isoforms in seed germination under salt stress. From this analysis, we found subfunctionalization of the receptors in the control of ...
متن کاملThe Ethylene Receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 Have Contrasting Roles in Seed Germination of Arabidopsis during Salt Stress.
In Arabidopsis (Arabidopsis thaliana), ethylene responses are mediated by a family of five receptors that have both overlapping and nonoverlapping roles. In this study, we used loss-of-function mutants for each receptor isoform to determine the role of individual isoforms in seed germination under salt stress. From this analysis, we found subfunctionalization of the receptors in the control of ...
متن کاملThe ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice.
Ethylene regulates multiple aspects of plant growth and development in dicotyledonous plants; however, its roles in monocotyledonous plants are poorly known. Here, we characterized a subfamily II ethylene receptor, ETHYLENE RESPONSE2 (ETR2), in rice (Oryza sativa). The ETR2 receptor with a diverged His kinase domain is a Ser/Thr kinase, but not a His kinase, and can phosphorylate its receiver d...
متن کامل